Joint numerical radius of spherical Aluthge transforms of tuples of Hilbert space operators
نویسندگان
چکیده
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولA note on $lambda$-Aluthge transforms of operators
Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...
متن کاملextend numerical radius for adjointable operators on Hilbert C^* -modules
In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.
متن کاملm-Isometric Commuting Tuples of Operators on a Hilbert Space
We consider a generalization of isometric Hilbert space operators to the multivariable setting. We study some of the basic properties of these tuples of commuting operators and we explore several examples. In particular, we show that the d-shift, which is important in the dilation theory of d-contractions (or row contractions), is a d-isometry. As an application of our techniques we prove a the...
متن کاملSome Lower Bounds for the Numerical Radius of Hilbert Space Operators
We show that if T is a bounded linear operator on a complex Hilbert space, then 1 2 ‖T‖ ≤ √ w2(T ) 2 + w(T ) 2 √ w2(T )− c2(T ) ≤ w(T ), where w(·) and c(·) are the numerical radius and the Crawford number, respectively. We then apply it to prove that for each t ∈ [0, 12 ) and natural number k, (1 + 2t) 1 2k 2 1 k m(T ) ≤ w(T ), where m(T ) denotes the minimum modulus of T . Some other related ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2021
ISSN: 1331-4343
DOI: 10.7153/mia-2021-24-28